Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Bis(1,2-diaminobenzene- N)bis-(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O,O')iron(II), -cobalt(II) and -nickel(II) at low temperature ${ }^{1}$

Michael H. Dickman

Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227, USA
Correspondence e-mail: michaeld42@aol.com

Received 1 June 1999
Accepted 20 October 1999
Addition of 1,2-phenylenediamine to solutions of bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- O, O^{\prime})cobalt(II), -iron(II) and -nickel(II) resulted in crystals containing centrosymmetric octahedral complexes with two amines per metal atom. In all three isostructural complexes, i.e. [$\left.M\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$ where $M=\mathrm{Fe}, \mathrm{Cu}$ and Ni , the two $\mathrm{C}-\mathrm{N}$ bonds differ significantly in length by an average of 0.031 (3) A. The phenyl C-C bonds display a pattern of small differences, the $\mathrm{C}-\mathrm{C}$ bond between the amines being longer than the shortest phenyl $\mathrm{C}-\mathrm{C}$ bonds by an average of 0.022 (4) Å.

Comment

The title complexes were synthesized in order to explore the coordination of bidentate ligands with $M(\mathrm{hfac})_{2}$ complexes (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionato- O, O^{\prime}). Tetramethylethylenediamine and other strong bidentate bases have been observed to coordinate to $\mathrm{Fe}(\mathrm{hfac})_{2}$ in a bidentate fashion to form neutral monomers (Dickman, 1998; Bailey et al., 1981). In contrast, addition of a bidentate nitrone to $\mathrm{Fe}(\mathrm{hfac})_{2}$ resulted in ligand exchange to produce a complex salt (Villamena et al., 1998). The reason for this difference is not clear. 1,2-Phenylenediamine (opda) was chosen for the present study because it is a weaker σ donor than tetramethylethylenediamine. Even when opda was added in a $1: 1$ ratio to $\mathrm{Co}(\mathrm{hfac})_{2}, \mathrm{Fe}(\mathrm{hfac})_{2}$ and $\mathrm{Ni}(\mathrm{hfac})_{2}$ hydrates, only 2:1 amine-metal complexes were isolated from CHCl_{3} / n-heptane solution. The resulting crystal structures show discrete centrosymmetric octahedrally coordinated complexes, with two mondentate opda ligands per metal atom (Fig. 1). The two amine functions on each phenyl ring have different $\mathrm{C}-\mathrm{N}$ bond lengths. The bond to the metal-coordinated amine, $\mathrm{C} 1-$ N 1 , is longer than $\mathrm{C} 2-\mathrm{N} 2$ by 0.031 (3) \AA on average. Short-

[^0]ening of the non-coordinated amine function has been seen previously in a monodentate opda complex of bis(1,3-di-phenyl-1,3-propanedionato- O, O^{\prime})nickel(II) [difference of 0.027 (3) \AA; Hotz et al., 1987] and in $\left[\operatorname{Cr}(\text { opda })_{2}(\mathrm{NCS})_{2}\right]$ [difference of 0.059 (3) \AA; Jubb et al., 1991]. However, in $\left[\mathrm{Ni}(\text { opda })_{4}\right]^{2-}$ (Elder et al., 1974) and in a macrocyclic Cd complex (Nelson et al., 1982), monodentate opda showed no significant difference in the $\mathrm{C}-\mathrm{N}$ bond lengths. Both of these structures had either poor data (e.g. twinning) or larger than usual s.u.'s.

In the present structures, bis(1,2-diaminobenzene- N)-bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O, O^{\prime})iron(II), (I), bis(1,2-diaminobenzene- N) bis (1,1,1,5,5,5-hexafluoropen-tane-2,4-dionato- O, O^{\prime})cobalt(II), (II), and bis(1,2-diamino-benzene- N)bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionatoO, O^{\prime})nickel(II), (III), the $\mathrm{N} 2 \mathrm{NH}_{2}$ group is slightly more planar than that of N 1 , as evidenced by the out-of-plane distances of the C atoms bound to the N atoms from the planes of the amines. This value averages 1.07 (4) A for C2 out of the $\mathrm{H} 1 \mathrm{~N} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2$ plane compared with 1.25 (3) \AA for C 1 out of the H1N1-N1-H2N1 plane.

Figure 1
Displacement ellipsoid plot (50\% probability) of compound (I) showing the atom-numbering scheme. H atoms are drawn as small circles of arbitrary radii.

The phenyl $\mathrm{C}-\mathrm{C}$ bond lengths show a pattern of differences not seen in previous structures. The $\mathrm{C} 1-\mathrm{C} 2$ bond, averaging 1.405 (3) \AA, is longer by 0.022 (4) \AA than the $\mathrm{C} 4-$ C5 and C5-C6 bonds, which average 1.383 (4) A. The C2C3, C5-C6 and C6-C1 bond lengths fall between these values, with an average of 1.393 (4) \AA.

A network of apparent intermolecular hydrogen bonds involving H atoms on N1 as donors to N2 and F3 extends through the crystal and an intramolecular hydrogen bond between N 2 and O 2 is also observed. This intramolecular hydrogen bond, although not especially short, might be one reason that only $2: 1$ complexes were isolated.

Experimental

Crystals were grown by addition of stoichiometric amounts of opda to CHCl_{3} solutions of the appropriate hydrated $M(\mathrm{hfac})_{2}$ complexes (Morris et al., 1968) with stirring and gentle heating, followed by addition of n-heptane and slow evaporation at room temperature in loosely covered beakers. ${ }^{19} \mathrm{~F}$ NMR spectra were measured on a Varian Mercury 300 MHz spectrometer interfaced with a Sun Microsystems workstation. Spectra were recorded at 294.5 K with $\mathrm{CF}_{3} \mathrm{COOH}$ in CDCl_{3} as an external reference. No peak was observed for (I), and peaks for (II) and (III) were observed at 60.79 and 48.40 p.p.m. in CDCl_{3}, respectively. IR spectra were recorded on a Nicolet FT-7000 spectrometer as KBr pellets. The IR spectra were essentially identical for all three compounds, with peaks at $\left(\mathrm{cm}^{-1}\right)$: 1637 (s), 1600 (m), 1558 (m), 1531 (m), 1506 (m), 1481 (s), 1350 (w$)$, 1261 (s), 1216 (s), 1195 (m), 1151 (s), 1134 (s), 1097 (w), 1074 (m), $1060(m), 931(w), 864(w), 856(w), 800(s), 777(w), 756(m), 723(w)$, $670(m), 589(m), 524(w), 468(m)$. Some splitting of peaks was evident in the case of (I), presumably due to oxidation in the pellet press.

Compound (I)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=686.25$
Monoclinic, $P 2_{d} / n$
$a=7.8148$ (1) А
$b=10.9332$ (2) £
$c=15.4893$ (3) \AA
$\beta=99.002(1)^{\circ}$
$V=1307.12(4) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.744 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8192 \\
& \quad \text { reflections } \\
& \theta=2.29-28.24^{\circ} \\
& \mu=0.701 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Prism, red } \\
& 0.40 \times 0.37 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART area-detector diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.620, T_{\text {max }}=0.735$
13875 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.107$
$S=1.002$
3129 reflections
233 parameters
All H-atom parameters refined

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

$\mathrm{Fe} 1-\mathrm{O} 2$	$2.0468(13)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.407(3)$
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.0593(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.397(3)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.2803(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.387(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.443(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.378(4)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.415(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.398(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.390(3)$		
			$92.12(6)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 1$	$86.59(5)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{N} 1$	$87.88(6)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1$	$93.41(5)$	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 1$	$119.06(12)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$93.04(6)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Fe} 1$	
$\mathrm{O} 2^{i}-\mathrm{Fe} 1-\mathrm{N} 1$	$86.96(6)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N1 $\cdots \mathrm{N}^{2 \mathrm{i}}$	$0.88(3)$	$2.30(3)$	$3.137(3)$	$158(2)$
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{~F}^{\text {ii }}$	$0.87(3)$	$2.59(3)$	$3.382(2)$	$151(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2 \cdots \mathrm{O} 2$	$0.86(3)$	$2.26(3)$	$3.125(2)$	$177(2)$

Symmetry codes: (i) $1-x,-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Compound (II)

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$	$D_{x}=1.774 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=689.33$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 6146
$a=7.769 \AA$	\quad reflections
$b=10.9013(1) \AA$	$\mu=2.30-28.56^{\circ}$
$c=15.4431(1) \AA$	$T=158(2) \mathrm{mm}^{-1}$
$\beta=99.288(1)^{\circ}$	Block, orange
$V=1290.729(14) \AA^{3}$	$0.36 \times 0.32 \times 0.30 \mathrm{~mm}$
$Z=2$	

Table 3
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{Co} 1-\mathrm{O} 2$	$2.0433(11)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.405(2)$
$\mathrm{Co} 1-\mathrm{O} 1$	$2.0562(11)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.395(2)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.2243(13)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.385(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4426(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.386(3)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.415(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.394(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.388(2)$		
			$87.72(5)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	$88.55(4)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$92.28(5)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$91.45(4)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$120.13(9)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$92.66(5)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1$	
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$87.34(5)$		

Symmetry code: (i) $-x,-y,-z$.

Table 4
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N1 $\cdots \mathrm{N}^{\mathrm{i}}$	$0.86(3)$	$2.33(3)$	$3.142(2)$	$159(2)$
N1-H2N1 $\cdots \mathrm{F}^{3 i}$	$0.94(3)$	$2.54(3)$	$3.388(2)$	$151(2)$
N2-H2N2 $\cdots \mathrm{O} 2$	$0.88(3)$	$2.21(3)$	$3.087(2)$	$176(2)$

Symmetry codes: (i) $1-x,-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Data collection

Bruker SMART area-detector diffractometer
ω scans
20859 measured reflections
5646 independent reflections
4392 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.137$
$S=1.005$
5646 reflections
233 parameters
All H -atom parameters refined

Compound (III)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=689.11$
Monoclinic, $P 2_{1} / n$
$a=7.7597$ (1) A
$b=10.9286$ (1) \AA
$c=15.3948$ (3) A
$\beta=98.813(1)^{\circ}$
$V=1290.11(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART area-detector diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.672, T_{\text {max }}=0.797$
13585 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.112$
$S=1.011$
3079 reflections
232 parameters
$D_{x}=1.774 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5479
reflections
$\theta=2.29-28.26^{\circ}$
$\mu=0.878 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, green
$0.46 \times 0.40 \times 0.35 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.037 \\
& \theta_{\max }=35.52^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-17 \rightarrow 17 \\
& l=-25 \rightarrow 25
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0766 P)^{2}\right. \\
& +0.7210 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& \Delta \rho_{\text {max }}=1.31 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-1.00 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.018 \text { (2) }
\end{aligned}
$$

3079 independent reflections

2784 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.26^{\circ}$
$h=-10 \rightarrow 9$
$k=-13 \rightarrow 14$
$l=-19 \rightarrow 19$

All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.06 P)^{2}+1.58 P\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$\Delta \rho_{\text {max }}=1.10 \mathrm{e}^{\circ} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$

Table 5
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$) for (III).

Ni1-O2	2.0225 (15)	C1-C2	1.404 (3)
Ni1-O1	2.0311 (14)	C2-C3	1.395 (3)
Ni1-N1	2.164 (2)	C3-C4	1.384 (4)
N1-C1	1.448 (3)	C4-C5	1.380 (4)
N2-C2	1.411 (3)	C5-C6	1.390 (4)
C1-C6	1.389 (3)		
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 1$	90.12 (6)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	92.97 (7)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1$	89.88 (6)	O1-Ni1-N1	87.03 (7)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1$	92.75 (7)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	119.91 (14)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	87.25 (7)		

[^1]Table 6
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N1 $\cdots \mathrm{N} 2^{\text {i }}$	$0.84(3)$	$2.38(3)$	$3.175(3)$	$156(3)$
N1-H2N1 $\cdots \mathrm{F}^{\text {ii }}$	$0.88(3)$	$2.61(3)$	$3.435(3)$	$156(2)$
N2-H2N2 $\cdots \mathrm{O} 2$	$0.90(3)$	$2.18(3)$	$3.083(3)$	$177(3)$

Symmetry codes: (i) $1-x,-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

For each crystal, decay was monitored by recollection of the first 50 frames at the end of the data collection. H atoms were refined isotropically in observed positions. For all three complexes, final CH distances ranged from 0.91 (3) to 0.99 (4) \AA and final $\mathrm{N}-\mathrm{H}$ distances ranged from 0.84 (3) to 0.94 (3) \AA. In compound (I), the highest peak in the final difference Fourier map was $1.14 \AA$ from F3, for compound (II) it was $1.09 \AA$ from F3, and for compound (III) it was 1.11 Å from F3.

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Partial funding for the diffractometer was obtained from the National Science Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1091). Services for accessing these data are described at the back of the journal.

References

Bailey, N. A., Fenton, D. C. \& Gonzalez, M. S. N. (1981). Inorg. Chim. Acta, 88, 125-134.
Blessing, R. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART User's Manual. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Dickman, M. H. (1998). Acta Cryst. C54, IUC9800049.
Elder, R. C., Koran, D. \& Mark, H. B. Jr (1974). Inorg. Chem. 13, 1644-1649.
Hotz, R. P., Purrington, S. T., Singh, P., Bereman, R. D. \& Sinn, E. (1987). Inorg. Chim. Acta, 130, 195-201.
Jubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. \& Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045-2050.
Morris, M. L., Moshier, R. W. \& Sievers, R. E. (1968). Inorg. Chem. 2, 411-412.
Nelson, S. M., Esho, F. S. \& Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407-415.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Structure Determination Software Programs. Bruker AXS Inc., Madison, Wisconsin, USA.
Villamena, F. A., Dickman, M. H. \& Crist, D. R. (1998). Inorg. Chem. 37, 14461453.

[^0]: ${ }^{1}$ Dedicated to the memory of Dr Leigh C. Porter (1955-1999).

[^1]: Symmetry code: (i) $-x,-y,-z$.

